Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Iran Med ; 26(12): 688-694, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38431949

RESUMO

BACKGROUND: The effect of vaccination on the SARS-CoV-2 baseline viral load and clearance during COVID-19 infection is debatable. This study aimed to assess the effects of demographic and vaccination characteristics on the viral load of SARS-CoV-2. METHODS: We included the patients referred for outpatient SARS-CoV-2 qRT-PCR (reverse transcriptase quantitative polymerase chain reaction) test between July and September 2022. Cycle threshold (Ct) data were compared based on the demographic and vaccination characteristics. A generalized linear model was used to determine the factors associated with the SARS-CoV-2 PCR Ct value. RESULTS: Of 657 participants, 390 (59.4%) were symptomatic and 308 (47.1%) were COVID-19 positive. Among 590 individuals with known vaccination status, 358 (60.6%) were booster vaccinated, 193 (32.6%) were fully vaccinated, 13 (2.2%) were partially vaccinated, and 26 (4.4%) were unvaccinated. Most vaccinated patients received inactivated vaccines (70.5%). The median Ct value was 20 [IQR: 18-23.75] with no significant difference between individuals with different vaccination statuses (P value = 0.182). There were significant differences in Ct value in terms of both symptom presence and onset (both P values < 0.001). Our regression model showed that inactivated vaccines (P value = 0.027), mRNA vaccines (P value = 0.037), and the presence and onset of symptoms (both P values < 0.001) were independent factors significantly associated with the viral load. CONCLUSION: The SARS-CoV-2 baseline viral load is unaffected by vaccination status, yet vaccination might accelerate viral clearance. Furthermore, we demonstrated that the presence and onset of symptoms are independent variables substantially associated with the patient's viral load.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/epidemiologia , COVID-19/prevenção & controle , Carga Viral , Vacinação , Vacinas de Produtos Inativados , Demografia , Reação em Cadeia da Polimerase , Teste para COVID-19
2.
Biosens Bioelectron ; 39(1): 88-93, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-22871516

RESUMO

Molecular imprinting is an attractive technique for preparing mimics of natural and biological receptors. Nevertheless, molecular imprinting for aqueous systems remains a challenge due to the hydrogen bonding between templates and functional monomers destroyed in the bulk water. The hydrogen bonding between templates and monomers are the most crucial factor governing recognition, particularly in non-covalent molecularly imprinted polymers. Using mesoporous materials for molecular imprinting is an effective approach to overcome this barrier and to remove the limitations of the traditional molecularly imprinted polymers which include incomplete template removal, small binding capacity, slow mass transfer, and irregular materials shape. Here, SBA-15 was used as a mesoporous silica material for synthesis of molecularly imprinted polypyrrole. The pyrrole monomers and template molecules were immobilized onto the SBA-15 hexagonal channels, and then polymerization occurred. The resulting nanocomposites were characterized by Fourier transform infrared (FT-IR) analysis, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) methods. In batch rebinding tests, the imprinted nanocomposites reached saturated adsorption within 100min and exhibited significant specific recognition toward the ascorbic acid (AA) with high adsorption capacity (83.7mg g(-1)). To further illustrate the recognition property of the imprinted nanocomposites, binary competitive and non-competitive adsorption experiments were performed with ascorbic acid, dopamine, paracetamol and epinephrine. The imprinting factors for these compounds in non-competitive adsorption experiments were 3.2, 1.5, 1.4 and 1.3, respectively. The results showed that the imprinted nanocomposites exhibited significant adsorption selectivity for the ascorbic acid against the related compounds.


Assuntos
Ácido Ascórbico/isolamento & purificação , Impressão Molecular/métodos , Nanocompostos/química , Polímeros/química , Pirróis/química , Dióxido de Silício/química , Vitaminas/isolamento & purificação , Adsorção , Cromatografia Líquida de Alta Pressão , Nanocompostos/ultraestrutura , Sensibilidade e Especificidade
3.
Analyst ; 137(18): 4368-74, 2012 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-22866325

RESUMO

Surface imprinting and adoption of a nano-sized physical form are two effective approaches to overcome the template transfer difficulty within molecularly imprinted polymers (MIPs). This work is an attempt to conquer the problem of template transfer difficulty within MIPs by using a nano-reactor as a substrate for the reaction between the monomer and the template. Negatively charged hexagonal nano-channels of SBA-15 can act as a support for attachment of positively charged aniline monomers and the 2,4-dinitrophenol (2,4-DNP) template. The imprinted and non-imprinted SBA-15/polyaniline nanocomposites were characterized by Fourier transform infrared (FT-IR), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and nitrogen adsorption-desorption isotherms. The results showed that the synthesized polymer possessed a highly ordered mesoporous structure. The distribution coefficient values of 2,4-DNP, K(d (2,4-DNP)), were estimated as 301.4 ± 2.3 and 101.2 ± 1.0 mL g(-1) for imprinted and non-imprinted polymers (NIP), respectively. The MIP-solid-phase extraction (SPE) process was optimized by evaluating the type of washing solvent and the composition and volume of the eluting solvent. The prepared MIP was used as a selective sorbent for SPE of 2,4-DNP in the presence of phenolic compounds in tap and sea water. The experimental results indicated that the MIP-SPE and NIP-SPE column yielded recoveries higher than 96% and 38%, respectively. The R.S.D. values were also lower than 3.2% and 4.6% for MIP-SPE and NIP-SPE, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...